Abstract
Lung cancer is the most common cause of cancer death in the world. Effective early detection and appropriate medications can help treat this deadly cancer. Therefore, early detection of lung cancer is of utmost importance, especially in screening high-risk populations (such as smokers) with an urgent need to identify new biomarkers. The present study aimed to demonstrate the potential of using the panel of DNA methylation as a biomarker for the early diagnosis of lung cancer from sputum samples. The methylated promoter of p16INK4a , RASSF1A, and MGMT genes was estimated by the methylation-specific polymerase chain reaction in a sample of 84 lung cancer patients (65 smokers and 19 non-smokers). Based on the results, p16INK4a promoter methylation was significantly associated with smoking habit and lung cancer progression in terms of histological grading and patient staging. The sensitivity and specificity of the p16INK4a gene as a biomarker for lung cancer were 71% and 90%, respectively. The methylated promoter of RASSF1A was less sensitive (48%) as a biomarker for lung cancer with 83%. The results demonstrated a strong association between promoter methylation of RASSF1A and late stages of lung cancer (P=0.0007). The sensitivity of the MGMT gene as a biomarker for lung cancer was 61% with high specificity (92%), compared to other candidate genes in this study. The epigenetic alteration in the promoter region of p16INK4a , RASSF1A, and MGMT genes is highly associated with cancer cell development. It is suggested that the use of these candidate biomarkers can be used as an adjunct to computed tomography screening to diagnose patients at high risk for lung cancer after validation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.