Abstract

Let [Formula: see text] be the free associative conformal algebra generated by a set [Formula: see text] with a bounded locality [Formula: see text]. Let [Formula: see text] be a subset of [Formula: see text]. A Composition-Diamond lemma for associative conformal algebras is first established by Bokut, Fong and Ke in 2004 [L. A. Bokut, Y. Fong and W.-F. Ke, Composition-Diamond Lemma for associative conformal algebras, J. Algebra 272 (2004) 739–774] which claims that if (i) [Formula: see text] is a Gröbner–Shirshov basis in [Formula: see text], then (ii) the set of [Formula: see text]-irreducible words is a linear basis of the quotient conformal algebra [Formula: see text], but not conversely. In this paper, by introducing some new definitions of normal [Formula: see text]-words, compositions and compositions to be trivial, we give a new Composition-Diamond lemma for associative conformal algebras, which makes the conditions (i) and (ii) equivalent. We show that for each ideal [Formula: see text] of [Formula: see text], [Formula: see text] has a unique reduced Gröbner–Shirshov basis. As applications, we show that Loop Virasoro Lie conformal algebra and Loop Heisenberg–Virasoro Lie conformal algebra are embeddable into their universal enveloping associative conformal algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.