Abstract

A composite object model is proposed for Monte Carlo simulation of radiological imaging systems. The composite model contains four components: a set of regular and 'voxelized' primitives, a 'modular' inclusion tree, a set of designated constructive solid geometry (CSG) trees, and a mapping from the set of CSG trees to the inclusion tree. The voxelized primitive is a primitive containing a stack of voxels whose intersections with a photon path are calculated based on Siddon's method. The inclusion tree is employed to describe the inclusion relationships of homogeneous subregions of material characteristics in larger regions in an object. The model is designed so that the 'divide-and-conquer' principle for modular software design can be used to construct an inclusion tree for a complex object. The designated CSG trees are used to model source distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.