Abstract

While most transient analysis techniques of interconnect networks ignore the nonlinearity of the driving gates, most CMOS driver models do not take into account the distributed loads. In this paper, we propose a new CMOS driver model which can handle distributed-lumped loads for transient analysis and power dissipation analysis. The output current of the CMOS driver is represented by a linear-quadratic-exponential piecewise model, taking into account the slope of the input signal, nonlinear effects of the driver and interconnect effects of the load. The CMOS transient leakage (short-circuit) current, thus short-circuit power dissipation, can be accurately evaluated. The model provides accuracy comparable to that of SPICE3e2 with one or two orders of magnitude less computing time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.