Abstract

Afforestation and reforestation activities achieve high attention at the policy agenda as measures for carbon sequestration in order to mitigate climate change. The Three-North Shelter Forest Program, the largest ecological afforestation program worldwide, was launched in 1978 and will last until 2050 in the Three-North regions (accounting for 42.4 % of China’s territory). Shelter forests of the Three-North Shelter Forest Program have exhibited severe decline after planting in 1978 due to lack of detailed climatic classification. Besides, a comprehensive assessment of climate adaptation for the current shelter forests was lacking. In this study, the aridity index determined by precipitation and reference evapotranspiration was employed to classify climatic zones for the afforestation program. The precipitation and reference evapotranspiration with 1-km resolution were estimated based on data from the tropical rainfall measuring mission and moderate resolution imaging spectroradiometer, respectively. Then, the detailed climatic classification for the afforestation program was obtained based on the relationship between the different vegetation types and the aridity index. The shelter forests in 2008 were derived from Landsat TM in the Three-North regions. In addition, climatic zones and shelter forests were corrected by comparing with natural vegetation map and field surveys. By overlaying the shelter forests on the climatic zones, we found that 16.30 % coniferous forests, 8.21 % broadleaved forests, 2.03 % mixed conifer-broadleaved forests, and 10.86 % shrubs were not in strict accordance with the climate conditions. These results open new perspectives for potential use of remote sensing techniques for afforestation management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.