Abstract

Reference evapotranspiration (ETo) maps play an important role in distributed hydrological modeling and are particularly useful for regional agricultural and water resource management. In the Three-North Shelter Forest Program, water requirements (i.e., ETo) of different land use types are important preconditions for afforestation program management. The Food and Agriculture Organization Penman–Monteith (FAO-PM) method is the most common method for estimating ETo, but it requires many different types of meteorological data, and few stations with adequate meteorological resources exist in the Three-North regions. In addition, the spatial distribution of ordinary meteorological stations is limited. This study employed two temperature-based ETo methods, Hargreaves and Thornthwaite. The monthly mean, maximum, and minimum air temperatures were estimated using moderate resolution imaging spectroradiometer (MODIS) data. The original coefficients of Hargreaves and mean temperatures of Thornthwaite were modified for regional calibration (with the FAO-PM method as the standard). In the comparison between the original/adjusted Hargreaves and the original/adjusted Thornthwaite methods, the adjusted Hargreaves method was appropriate for estimating ETo in the Three-North regions. The average mean bias error (MBE) was −0.21 mm, the relatively root mean square error (RRMSE) was 13.44 %, the correlation coefficient (R 2) was 0.85, and the slope (b) was 1.00 for the monthly ETo. While the MBE was 2.32 mm, the RRMSE was 7.07 %, the R 2 was 0.90, and the b was 1.00 for the annual ETo. Therefore, it is possible to estimate monthly and annual ETo values for other parts of the country or the world using adjusted Hargreaves with the estimated air temperature data instead of using the FAO-PM with observed data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.