Abstract
We introduce a new class of distances between nonnegative Radon measures in Euclidean spaces. They are modeled on the dynamical characterization of the Kantorovich-Rubinstein-Wasserstein distances proposed by Benamou-Brenier and provide a wide family interpolating between the Wasserstein and the homogeneous (dual) Sobolev distances. From the point of view of optimal transport theory, these distances minimize a dynamical cost to move a given initial distribution of mass to a final configuration. An important difference with the classical setting in mass transport theory is that the cost not only depends on the velocity of the moving particles but also on the densities of the intermediate configurations with respect to a given reference measure. We study the topological and geometric properties of these new distances, comparing them with the notion of weak convergence of measures and the well established Kantorovich-Rubinstein-Wasserstein theory. An example of possible applications to the geometric theory of gradient flows is also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.