Abstract

On the basis of previous concepts concerning the molecular nature of pressure-sensitive adhesion, a simple method of preparing new adhesives with the desired mechanical and adhesive behavior and water-absorbability via mixing of nonadhesive polymers has been developed. Pressure-sensitive adhesion is related to the combination of a high energy of cohesion and a large free volume, which leads to a high molecular mobility. This method is based on the formation of interpolymer or polymer-oligomer complexes during mixing of macromolecules capable of hydrogen, electrostatic, or ionic bonding. In interpolymer complexes, a high cohesion results from the formation of bonds between macromolecules carrying complementary groups in main chains, whereas free volume is related to defectiveness of the resulting network and formation of loops. In complexes formed by a high-molecular-mass polymer and an oligomer carrying complementary reactive groups at ends of short chains, a high energy of cohesion is related to their interaction with mainchain functional groups of the polymer, whereas a relatively large free volume is associated with the length and flexibility of intermacromolecular crosslinks via oligomer chains. The adhesive and viscoelastic properties of adhesives and their water absorbability are regulated by changes in the composition of mixtures of a film-forming polymer with a polymer or oligomer crosslinker and a plasticizer. In this case, an increase in cohesive strength is achieved owing to an increase in the crosslinker concentration, while the enhancement of free volume is ensured by the increasing plasticizer content in the blend. Adhesive materials capable of adherence to wet substrates, hydroactivated adhesives, and adhesion moisture sorbents have been prepared for the first time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call