Abstract

We study a hypercyclicity property of linear dynamical systems: a bounded linear operator T acting on a separable infinite-dimensional Banach space X is said to be hypercyclic if there exists a vector x in X such that {T^{n}x : n>0} is dense in X, and frequently hypercyclic if there exists x in X such that for any non empty open subset U of X, the set {n>0 ; T^n x \in U} has positive lower density. We prove that if T is a bounded operator on X which has sufficiently many eigenvectors associated to eigenvalues of modulus 1 in the sense that these eigenvectors are perfectly spanning, then T is automatically frequently hypercyclic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.