Abstract

A new and efficient class of nonlinear receivers is introduced for digital communication systems. These "iterated-decision" receivers use optimized multipass algorithms to successively cancel interference from a block of received data and generate symbol decisions whose reliability increases monotonically with each iteration. Two variants of such receivers are discussed: the iterated-decision equalizer and the iterated-decision multiuser detector. Iterated-decision equalizers, designed to equalize intersymbol interference (ISI) channels, asymptotically achieve the performance of maximum-likelihood sequence detection (MLSD), but only have a computational complexity on the order of a linear equalizer (LE). Even more importantly, unlike the decision-feedback equalizer (DFE), iterated-decision equalizers can be readily used in conjunction with error-control coding. Similarly, iterated-decision multiuser detectors, designed to cancel multiple-access interference (MAI) in typical wireless environments, approach the performance of the optimum multiuser detector in uncoded systems with a computational complexity comparable to a decorrelating detector or a linear minimum mean-square error (MMSE) multiuser detector.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call