Abstract

In this paper we propose a new approach for estimating the unknown parameter in the stochastic linear regressive model with stationary ergodic sequence of covariates. Under mild conditions on the joint distribution of the covariate and the error, the estimator constructed is shown to be strongly consistent in two important special cases: (1) The sequence of (variate, covariate) is independent identically distributed (i.i.d.), and (2) the sequence of variates is a stationary autoregressive series. The asymptotical normality is also discussed under more assumptions on the distribution of the covariate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.