Abstract

This paper presents a 3D chaotic system which is constructed by an auto-switched numerical resolution of multiple three dimensional continuous chaotic systems. The designed chaotic system provides complex chaotic attractors and can change its behaviors automatically via a chaotic switching-rule. Some complex dynamical behaviors are investigated and analyzed. The originality of the proposed architecture is that allows to solve the problem of the finite precision due to the digital implementation while provides a good trade-off between high security, performance and hardware resources (low power and cost). Hardware digital implementation and FPGA circuit experimental results demonstrate a promising technique can be applied in efficient embedded ciphering communication systems. Moreover, the proposed chaotic system should be very useful for the consideration of reducing negative influence of dynamical degradation in real-time embedded applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.