Abstract

PurposeThe paper aims to present a new mechanical scheme for a leg to be included in legged vehicles that simplifies the control actuations along the stride.Design/methodology/approachThe scheme includes three four‐bar links grouped in two mechanisms. The first one decouples the vertical and horizontal foot movements. The second one produces a constant horizontal foot velocity when the corresponding motor is given a constant speed. A hybrid robot with wheels at the end of the hind legs has been simulated and constructed to validate the leg performance.FindingsThe gait control requires only five commands for the electronic cards to control the leg. Decoupling vertical and horizontal movements allows a more adequate selection of actuators, a reduction of energy consumption, and higher load capacity and robot velocity. Additional mechanical benefits, such as improved robustness and lower inertia, are obtained. The hind legs can also be articulated, allowing the robot to overcome an obstacle and to climb up and down stairs.Research limitations/implicationsA hybrid robot offers greater stability with respect to a legged robot. This way the lateral movement is not a concern, and therefore it has not been tested yet during the walking cycle.Originality/valueThis new scheme obtains a quasi‐Cartesian behaviour for the foot movement that drastically simplifies the control of the walking cycle. Although the decoupling between movements has already been obtained in previous configurations, these follow a pantograph structure and suffer from blocking problems when they are subject to lateral forces. These schemes were suitable for crab‐like gaits. The proposed leg moves according to a mammal‐like gait.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.