Abstract

The use of peatlands in the humid tropics requires drainage to remove excess rainfall. The design principles for the drainage systems currently being implemented on peatlands are the same as for mineral soils. The objective of such systems is the timely removal of excess rainfall by surface runoff. For peatlands, with their different soil-hydraulic characteristics, these systems have resulted in poor watertable control and high rates of irreversible subsidence. Concerns about this rate of subsidence and the level of sustainability of the present land use have prompted a study to develop a new water management system. This new system includes a shift from a drainage system that focuses on discharge of excess water towards a system that combines drainage and water conservation. In the new two-step design, the drain spacing and corresponding drain discharges are obtained with a steady-state approach. These outputs are used to calculate the capacity of the drains, including control structures, using an unsteady-state approach. The new system results in a shallower but more narrowly spaced drainage system and maintains a more constant but relatively high watertable and reduces subsidence. It should be remembered however, that even with the improved water management, subsidence cannot be arrested; it is the price one has to pay for the use of tropical peatlands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.