Abstract

A modeling approach is described that extracts the functional dependence of carrier mobility on local transverse and longitudinal fields, channel doping, fixed interface charge, and temperature in MOS inversion and accumulation layers directly from the experimentally measured effective (or average) mobility. This approach does not require a priori detailed knowledge of the experimental variation of mobility within the inversion or accumulation layer, and it can be used to evaluate the validity of other models described in the literature. Also, an improved transverse-field dependent mobility model is presented for electrons in MOS inversion layers that was developed using this new modeling approach. This model has been implemented in the PISCES 2-D device simulation program. Comparisons of the calculated versus measured data show excellent agreement for I/sub D/-V/sub G/ and I/sub D/-V/sub D/ curves for devices with L/sub eff/=0.5 to 1.2 mu m.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.