Abstract
This paper presents an algorithm for solving the minimum-energy optimal control problem of conductance-based spiking neurons. The basic procedure is (1) to construct a conductance-based spiking neuron oscillator as an affine nonlinear system, (2) to formulate the optimal control problem of the affine nonlinear system as a boundary value problem based on Pontryagin’s maximum principle, and (3) to solve the boundary value problem using the homotopy perturbation method. The construction of the minimum-energy optimal control in the framework of the homotopy perturbation technique is novel and valid for a broad class of nonlinear conductance-based neuron models. The applicability of our method in the FitzHugh–Nagumo and Hindmarsh–Rose models is validated by simulations.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have