Abstract
In this paper a new approach to quantitative Laser-Induced Breakdown Spectroscopy (LIBS) analysis of silicate rocks is presented. The method is adapted from the Franzini and Leoni algorithm, a method widely used in X-Ray Fluorescence analysis for correcting the matrix effects in the determination of the composition of geological materials. To illustrate the features of the new method proposed, nine elements were quantified in 19 geological standards by building linear univariate calibration curves, linear multivariate calibration surfaces (PLS) and using Artificial Neural Networks. The results were then compared with the predictions derived from the application of the algorithm here proposed. It was found that the Franzini and Leoni approach gives results much more precise than linear uni- and multivariate approaches, and comparable with the ones derived from the application of Artificial Neural Networks. A definite advantage of the proposed approach is the possibility of building multivariate non-linear calibration surfaces using linear optimization algorithms, a feature which makes the application of the Franzini and Leoni method in LIBS analysis much simpler (and controllable) with respect to the algorithms based on Artificial Neural Networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.