Abstract
The factorization of almost-periodic triangular symbols, G, associated to finite-interval convolution operators is studied for two classes of operators whose Fourier symbols are almost periodic polynomials with spectrum in the group α Z + β Z + Z ( α , β ∈ ] 0 , 1 [ , α + β > 1 , α / β ∉ Q ). The factorization problem is solved by a method that is based on the calculation of one solution of the Riemann–Hilbert problem G Φ + = Φ − in L ∞ ( R ) and does not require solving the associated corona problems since a second linearly independent solution is obtained by means of an appropriate transformation on the space of solutions to the Riemann–Hilbert problem. Some unexpected, but interesting, results are obtained concerning the Fourier spectrum of the solutions of G Φ + = Φ − . In particular it is shown that a solution exists with Fourier spectrum in the additive group α Z + β Z whether this group contains Z or not. Possible application of the method to more general classes of symbols is considered in the last section of the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.