Abstract
This paper discusses the fitting of the proportional hazards model to interval-censored failure time data with missing covariates. Many authors have discussed the problem when complete covariate information is available or the missing is completely at random. In contrast to this, we will focus on the situation where the missing is at random. For the problem, a sieve maximum likelihood estimation approach is proposed with the use of I-spline functions to approximate the unknown cumulative baseline hazard function in the model. For the implementation of the proposed method, we develop an EM algorithm based on a two-stage data augmentation. Furthermore, we show that the proposed estimators of regression parameters are consistent and asymptotically normal. The proposed approach is then applied to a set of the data concerning Alzheimer Disease that motivated this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.