Abstract
Existing semiparametric mixture cure models with interval-censored data often assume a survival model, such as the Cox proportional hazards model, proportional odds model, accelerated failure time model, or their transformations for the susceptible subjects. There are cases in practice that such conventional assumptions may be inappropriate for modeling survival outcomes of susceptible subjects. We propose a more flexible class of generalized accelerated hazards mixture cure models for analysis of interval-censored failure times in the presence of a cure fraction. We develop a sieve maximum likelihood estimation in which the unknown cumulative baseline hazard function is approximated by means of B-splines and bundled with regression parameters. The proposed estimator possesses the properties of consistency and asymptotic normality, and can achieve the optimal global convergence rate under some conditions. Simulation results demonstrate that the proposed estimator performs satisfactorily in finite samples. The application of the proposed method is illustrated by the analysis of smoking cessation data from a lung health study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.