Abstract

This study focuses on the impact of model estimation methods on earnings forecast accuracy. Compared with an ordinary least squares (OLS) regression combined with winsorization, robust regression MM-estimation improves the earnings forecast accuracy of all the models examined, especially for those with more variables. My findings indicate that the impact of outliers on the OLS regression increases with the number of variables in the models, alerting researchers who use OLS regressions for forecasting. My findings explain the puzzling negative relationship between earnings forecast accuracy and the number of model variables in prior research. Moreover, I demonstrate the valuation implications of earnings forecasted using robust regression MM-estimation. This study contributes to earnings forecasting, valuation, and influential observation treatment in forecasting. Forthcoming in the International Journal of Forecasting

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.