Abstract

Dust-ion acoustic waves are investigated in this model of plasma consisting of negatively charged dusts, cold ions and inertia less quantum effected electrons with the help of a typical energy integral. In this case, a new technique is applied formulating a differential equation to establish the energy integral in case of multi-component plasmas which is not possible in general. Dust-ion acoustic (DIA) compressive and rarefactive, supersonic and subsonic solitons of various amplitudes are established. The consideration of smaller order nonlinearity in support of the newly established quantum plasma model is observed to generate small amplitude solitons at the decrease of Mach number. The growths of soliton amplitudes and potential depths are found more sensitive to the density of quantum electrons. The small density ratio r(= 1 − f) with a little quantized electrons supplemented by the dust charges Zd and the in-deterministic new quantum parameter C2 are found responsible to finally support the generation of small amplitude solitons admissible for the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call