Abstract
We revise a method by Kalnins, Kress and Miller (2010) for constructing a canonical form for symmetry operators of arbitrary order for the Schr\"odinger eigenvalue equation $H\Psi \equiv (\Delta_2 +V)\Psi=E\Psi$ on any 2D Riemannian manifold, real or complex, that admits a separation of variables in some orthogonal coordinate system. Most of this paper is devoted to describing the method. Details will be provided elsewhere. As examples we revisit the Tremblay and Winternitz derivation of the Painlev\'e VI potential for a 3rd order superintegrable flat space system that separates in polar coordinates and we show that the Painlev\'e VI potential also appears for a 3rd order superintegrable system on the 2-sphere that separates in spherical coordinates, as well as a 3rd order superintegrable system on the 2-hyperboloid that separates in spherical coordinates and one that separates in horocyclic coordinates. The purpose of this project is to develop tools for analysis and classification of higher order superintegrable systems on any 2D Riemannian space, not just Euclidean space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.