Abstract
Evaluation of internal energy in a crystal lattice requires precise calculation of lattice sums. Such evaluation is a problem in the case of small (nano) particles because the traditional methods are usually effective only for infinite lattices and are adapted to certain specific potentials. In this work, a new method has been developed for calculation of lattice energy. The method is a generalisation of conventional geometric probability techniques for arbitrary fixed lattices in a finite crystal domain. In our model, the lattice energy for wide range of two- body central interaction potentials (including long-range Coulomb potential) has been constructed using absolutely convergent sums. No artificial cut-off potential or periodical extension of the domain (which usually involved for such calculations) have been made for calculation of the lattice energy under this approach. To exemplify the applications of these techniques, the energy of Coulomb potential has been plotted as the function of the domain size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.