Abstract

S4(AsF6)2.AsF3 was prepared by the reaction of sulfur with arsenic pentafluroide in liquid AsF3 (quantitatively) and in anhydrous HF in the presence of trace amounts of bromine. A single-crystal X-ray structure of the compound has been determined: monoclinic, space group P2(1)/c, Z = 4, a = 7.886(1) A, b = 9.261(2) A, c = 19.191(3) A, beta = 92.82(1) degrees, V = 1399.9(4) A3, T = 293 K, R1 = 0.052 for 1563 reflections (I > 2 sigma (I) 1580 total and 235 parameters). We report a term-by-term calculation of the lattice potential energy of this salt and also use our generalized equation, which estimates lattice energies to assist in probing the homopolyatomic cation thermochemistry in the solid and the gaseous states. We find S4(AsF6)2.AsF3 to be more stable (delta fH degree [S4(AsF6)2.AsF3,c] approximately -4050 +/- 105 kJ/mol) than either the unsolvated S4(AsF6)2 (delta fH degree [S4(AsF6)2,c] approximately -3104 +/- 117 kJ/mol) by 144 kJ/mol or two moles of S2AsF6 (c) and AsF3 (1) by 362 kJ/mol. The greater stability of the S(4)2+ salt arises because of the greater lattice potential energy of the 1:2 solvated salt (1734 kJ/mol) relative to twice that of the 1:1 salt (2 x 541 = 1082 kJ/mol). The relative lattice stabilization enthalpies of M(4)2+ ions relative to two M2+ ions (i.e., in M4(AsF6)2 (c) with respect to two M2AsF6 (c) (M = S, Se, and Te)) are found to be 218, 289, and 365 kJ/mol, respectively. Evaluation of the thermodynamic data implies that appropriate presently available anions are unlikely to stabilize M2+ in the solid phase. A revised value for delta fH degree [Se4(AsF6)2,c] = -3182 +/- 106 kJ/mol is proposed based on estimates of the lattice energy of Se4(AsF6)2 (c) and a previously calculated gasphase dimerization energy of 2Se2+ to Se(4)2+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.