Abstract
Aqueous–phase reforming (APR) and atmospheric pressure vapour–phase reforming (AVPR) of biomass hydrolysate were performed in a continuous flow fixed–bed reactor using Raney–Ni, supported Ru, Pd and Pt catalysts for high-yield hydrogen production. Sorghum biomass hydrolysate and glycerol were used as feeds. It was observed that AVPR process was considerably more effective than APR process for high-yield hydrogen production. The hydrogen yield was highest when Raney–Ni catalyst was used in AVPR of sorghum hydrolysate. Increasing the operating temperature from 230 to 270 °C in AVPR process led to 3.4 fold increase in hydrogen yield. The results showed that AVPR is more attractive than APR process for production of high-yield hydrogen with low amount of CO2 and CH4. No pressure application in AVPR is also a big advantage over APR for implementation the process in industry.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have