Abstract

Based on the fully two-dimensional (2D) Poisson’s solution in both silicon film and insulator layer, a compact and analytical threshold voltage model, which accounts for the fringing field effect of the short channel symmetrical double-gate (SDG) MOSFETs, has been developed. Exploiting the new model, a concerned analysis combining FIBL-enhanced short-channel effects and high- k gate dielectrics assess their overall impact on SDG MOSFET’s scaling. It is found that for the same equivalent oxide thickness, the gate insulator with high- k dielectric constant which keeps a great characteristic length allows less design space than SiO 2 to sustain the same FIBL induced threshold voltage degradation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.