Abstract

With a view to detecting foliage-obscured/ground-obscured targets on a global scale, low frequency (i.e., very high frequency (VHF)/ultrahigh frequency (UHF) band) and wide bandwidth is a trend in future spaceborne synthetic aperture radar (SAR) system design. However, due to the dispersion of ionosphere, VHF/UHF wide bandwidth SAR signals inevitably experience adverse effects. In contrast to narrow bandwidth SAR at VHF/UHF, quadratic and cubic ionospheric phase errors will introduce noticeable effects on future wide-bandwidth SAR systems. Traditional evaluation models based on Taylor series expansion may become inaccurate when an extremely wide bandwidth is considered. With a focus on this this issue, first, the shortcoming of Taylor series expansion of ionospheric phase errors is briefly discussed in this paper. Then, a new analytical model based on Legendre orthogonal polynomials is developed, which is expected to be widely applicable, especially for low-frequency and wide-bandwidth SAR systems. Finally, compared with previous models based on Taylor series expansion, numerical simulations and evaluations show the superiority of the new model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.