Abstract

Piecewise-linear (PWL) neural networks are widely known for their amenability to digital implementation. This paper presents a new algorithm for learning in PWL networks consisting of a single hidden layer. The approach adopted is based upon constructing a continuous PWL error function and developing an efficient algorithm to minimize it. The algorithm consists of two basic stages in searching the weight space. The first stage of the optimization algorithm is used to locate a point in the weight space representing the intersection of N linearly independent hyperplanes, with N being the number of weights in the network. The second stage is then called to use this point as a starting point in order to continue searching by moving along the single-dimension boundaries between the different linear regions of the error function, hopping from one point (representing the intersection of N hyperplanes) to another. The proposed algorithm exhibits significantly accelerated convergence, as compared to standard algorithms such as back-propagation and improved versions of it, such as the conjugate gradient algorithm. In addition, it has the distinct advantage that there are no parameters to adjust, and therefore there is no time-consuming parameters tuning step. The new algorithm is expected to find applications in function approximation, time series prediction and binary classification problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.