Abstract
An input space is a set of all the possible inputs for a neural network. An element or a group of elements in the input space can easily be understood by projecting them on their original forms. Even though Piece-wise Linear Neural Networks (PLNNs) are a nonlinear system in general, a PLNN can also be expressed in terms of linear constraints because the Rectified Linear Units (ReLU) function is a piece-wise linear function. A PLNN divides the input space into disjoint linear regions. We proved that all components of the outputs are continuous at the boundary between two different adjacent regions. This continuity implies that the boundary corresponding to a unit itself should be continuous regardless of the regions. Furthermore, we also obtained the boundaries of a single-class region, which has the same predicted classes in the interior of the region. Finally, we suggested that the point-wise robustness of a neural network can be calculated by investigating the boundaries of linear regions and the single-class regions. We obtained adversarial examples in which Euclidean distances from original inputs are less than 0.01 pixels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.