Abstract
Abstract A new hybrid method for finding the mixed layer depth (MLD) of individual ocean profiles models the general shape of each profile, searches for physical features in the profile, and calculates threshold and gradient MLDs to assemble a suite of possible MLD values. It then analyzes the patterns in the suite to select a final MLD estimate. The new algorithm is provided in online supplemental materials. Developed using profiles from all oceans, the algorithm is compared to threshold methods that use the C. de Boyer Montégut et al. criteria and to gradient methods using 13 601 Argo profiles from the southeast Pacific and southwest Atlantic Oceans. In general, the threshold methods find deeper MLDs than the new algorithm and the gradient methods produce more anomalous MLDs than the new algorithm. When constrained to using only temperature profiles, the algorithm offers a clear improvement over the temperature threshold and gradient methods; the new temperature algorithm MLDs more closely approximate the density algorithm MLDs than the temperature threshold and gradient MLDs. The algorithm is applied to profiles from a formation region of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW). The density algorithm finds that the deepest MLDs in this region routinely reach 500 dbar and occur north of the A. H. Orsi et al. mean Subantarctic Front in the southeastern Pacific Ocean. The deepest MLDs typically occur in August and September and are congruent with the subsurface salinity minimum, a signature of AAIW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.