Abstract

To minimise systematic errors in Monte Carlo simulations of charged particles, long range electrostatic interactions have to be calculated accurately and efficiently. Standard approaches, such as Ewald summation or the naive application of the classical Fast Multipole Method, result in a cost per Metropolis-Hastings step which grows in proportion to some positive power of the number of particles N in the system. This prohibitively large cost prevents accurate simulations of systems with a sizeable number of particles. Currently, large systems are often simulated by truncating the Coulomb potential which introduces uncontrollable systematic errors. In this paper we present a new multilevel method which reduces the computational complexity to O(log⁡(N)) per Metropolis-Hastings step, while maintaining errors which are comparable to direct Ewald summation. We show that compared to related previous work, our approach reduces the overall cost by better balancing time spent in the proposal- and acceptance- stages of each Metropolis-Hastings step. By simulating large systems with up to N=105 particles we demonstrate that our implementation is competitive with state-of-the-art MC packages and allows the simulation of very large systems of charged particles with accurate electrostatics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.