Abstract
With the boom of the communication systems on some independent platforms (such as satellites, space stations, airplanes, and vessels), co-site interference is becoming prominent. The adaptive interference cancellation method has been adopted to solve the co-site interference problem. But the broadband interference cancellation performance of traditional Adaptive Co-site Interference Cancellation System (ACICS) with large delay mismatching and antenna sway is relatively poor. This study put forward an Adaptive Co-site Broadband Interference Cancellation System With Two Auxiliary Channels (ACBICS-2A). The system model was established, and the steady state weights and Interference Cancellation Ratio (ICR) were deduced by solving a time-varying differential equation. The relationship of ICR, system gain, modulation factor, interference signal bandwidth and delay mismatching degree was acquired through an in-depth analysis. Compared with traditional adaptive interference cancellation system, the proposed ACBICS-2A can improve broadband interference cancellation ability remarkably with large delay mismatching and antenna sway for the effect of auxiliary channel. The maximum improved ICR is more than 25 ​dB. Finally, the theoretical and simulation results were verified by experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.