Abstract

ABSTRACTIn this paper, a new hybrid method which combines radial basis function (RBF) neural network with a sliding-mode technique to take advantage of their common features is used to control a class of nonlinear systems. A real-time dynamic nonlinear learning law of the weight vector is synthesized and the closed-loop stability has been demonstrated using Lyapunov theory. The solution presented in this work does not need the knowledge of the perturbation bounds, neither the knowledge of the full state of the nonlinear system. In addition, the bounds of the nonlinear functions are assumed to be unknown and the proposed RBF structure uses reduced number of hidden units. This hybrid control strategy is applied to extract the maximum available energy from a stand-alone self-excited variable low-wind speed energy conversion system and design the dc-voltage and rotor flux controllers as well as the load-side frequency and voltage regulators assuming that the measured outputs are the rotor speed, stator currents, load-side currents and voltages despite large variation of the rotor resistance and uncertainties on the inductances. Finally, simulation results compared with those obtained using the well-known second-order sliding-mode controller are given to show the effectiveness and feasibility of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.