Abstract

This paper shows that the performance of the Hopfield network for solving optimization problems can be improved by using a new activation (output) function. The effects of the activation function on the performance of the Hopfield network are analyzed. It is shown that the sigmoid activation function in the Hopfield network is sensitive to noise of neurons. The reason is that the sigmoid function is most sensitive in the range where noise is most predominant. A new activation function that is more robust against noise is proposed. The new activation function has the capability of amplifying the signals between neurons while suppressing noise. The performance of the new activation function is evaluated through simulation. Compared with the sigmoid function, the new activation function reduces the error rate of tour length by 30.6% and increases the percentage of valid tours by 38.6% during simulation on 200 randomly generated city distributions of the 10-city traveling salesman problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.