Abstract
A parallel algorithm based on a neural network model for solving clique vertex-partition problems in arbitrary non-directed graphs is presented in this paper. A clique of a graph G = (V, E) with a set of vertices V and a set of edges E is a complete subgraph of G where any pair of vertices is connected with an edge. A clique vertex-partition problem of a graph G is to partition every vertex in V into a set of disjointed cliques of G. The clique vertex-partition problem with the minimum number of cliques in an arbitrary graph is known to be NP-complete. The algorithm requires nm processing elements for the n vertex m partition problem. A total of 10 different problems with 8 vertex to 300 vertex graphs were examined where the algorithm found a solution in nearly constant time. The circuit diagram of the neural network model is also proposed in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.