Abstract

For global oceanic and coastal waters, a multilayer back propagation neural network (MBPNN) is developed to retrieve the diffuse attenuation coefficient for the downwelling spectral irradiance at the wavelength 490nm (Kd(490)). The applicability of Lee's quasi-analytical algorithm-based semi-analytical model, Wang's switching model, Chen's semi-analytical model, Jamet's neural network model, and the MBPNN model is evaluated using the NASA bio-optical marine algorithm dataset (NOMAD) and the Eastern China Seas dataset. Based on the comparison of Kd(490) predicted by these five models, with field measurements taken in global oceanic and coastal waters, it is found that the MBPNN model provides a stronger performance than the Lee, Wang, Chen, and Jamet's models. The atmospheric effects on the MODIS data are eliminated using near-infrared band-based and shortwave infrared band-based combined models, and the Kd(490) is quantified from the MODIS data after atmospheric correction using the MBPNN model. The study results indicate that the MBPNN model produces ~28% uncertainty in estimating Kd(490) from the MODIS data. Finally, an exemplification of the applicability of the model to the coastal regions in the Eastern China Seas is carried out. Our results suggest that the Kd(490) shows a large variation in the Eastern China Seas, ranging from 0.02 to 4.0m−1, with an average value of ~0.17m−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.