Abstract

The horizontal ground displacement generated by seismically induced liquefaction is known to produce significant damage to engineered structures. A backpropagation neural network model is developed to predict the horizontal ground displacements. A large database containing the case histories of lateral spreads observed in eight major earthquakes is used. The results of this study indicate that the neural network model serves as a reliable and simple predictive tool for the amount of horizontal ground displacement. As more data become available, the model itself can be improved to make more accurate displacement prediction for a wider range of earthquake and site conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.