Abstract
An architecture of densely connected compact neural networks is presented for the maximum-likelihood sequence estimation (MLSE) of signals in digital communications. The combinatorial minimization of the detection cost Is performed through the optimization of a concave Lyapunov function associated with the network, and truly paralleled operations can be achieved via the collective computational behaviors. In addition, the MLSE performance can be improved by a paralleled annealing technique which has been developed for obtaining optimal or near-optimal solutions in high-speed, real-time applications. Given a sequence of length n, the network of complexity and throughput rate are O(L) and n/T/sub c/, respectively, where L is the number of symbols the inference spans and T/sub c/ is the convergence time. The hardware architecture as well as network models, neuron models, and methods of feeding the input to the network are addressed in terms of the probability of error. Through the simulations, it is demonstrated that the proposed compact neural network approach is an efficient method of realizing the MLSE receiver.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have