Abstract

The ability to rapidly assimilate new information is essential for survival in a dynamic environment. This requires experiences to be encoded alongside the contextual schemas in which they occur. Tse et al. (Science 316(5821):76-82, 2007) showed that new information matching a preexisting schema is learned rapidly. To better understand the neurobiological mechanisms for creating and maintaining schemas, we constructed a biologically plausible neural network to learn context in a spatial memory task. Our model suggests that this occurs through two processing streams of indexing and representation, in which the medial prefrontal cortex and hippocampus work together to index cortical activity. Additionally, our study shows how neuromodulation contributes to rapid encoding within consistent schemas. The level of abstraction of our model further provides a basis for creating context-dependent memories while preventing catastrophic forgetting in artificial neural networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call