Abstract
SummaryThis paper investigates a composite neural dynamic surface control (DSC) method for a class of pure‐feedback nonlinear systems in the case of unknown control gain signs and full‐state constraints. Neural networks are utilized to approximate the compound unknown functions, and the approximation errors of neural networks are applied in the design of updated adaptation laws. Comparing the proposed composite approximation method with the conventional ones, a faster and better approximation performance result can be obtained. Combining the composite neural networks approximation with the DSC technique, an improved composite neural adaptive control approach is designed for the considered nonlinear system. Then, together with the Lyapunov stability theory, all the variables of the closed‐loop system are semiglobal uniformly ultimately bounded. The infringements of full state constraints can be avoided in the case of unknown control gain signs as well as unknown disturbances. Finally, two simulation examples show the effectiveness and feasibility of the proposed results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robust and Nonlinear Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.