Abstract

Network pharmacology approach has been observed a powerful tool to predict underlying complex pharmacological mechanism of herbs. Asparagus racemosus has been reported to show ameliorative effects in treating epilepsy and comorbid memory dysfunction but mechanism of this amelioration is elusive. Hence a network pharmacology approach was employed to investigate the plausible mechanism of A. recemosus. : Bioactive compounds of A. racemosus were extracted based on the TCMSP, PCIDB, and BATMAN-TCM database. The potential targets of bioactive compounds were collected using target fishing. Epilepsy and comorbid dementia genes were collected from DISGENET. A PPI network among these targets was constructed using the intersecting key targets between herb targets and disease targets. Besides, DAVID bioinformatics resource was utilized for the pathway enrichment analysis on GO and KEGG. Ultimately, phytochemical compound-target genes-Pathways network has been assembled utilizing Cytoscape to decipher the mechanism of the herb. The network analysis revealed that 5 targets (CASP3, TNF, VEGFA, PTGS2 and CNR1) might be the key therapeutic targets of asparagus on Epilepsy comorbid Alzheimer's disease. Based on high connectivity, four hub compounds with the highest connectivity were noted and it includes Shatavarin V, Sarsasapogenin, Shatavarin IX, and Shatavarin VI. A total of 19 KEGG terms were enriched as the potential pathways of A. racemosus in Epilepsy comorbid Alzheimer's disease. This study envisaged the pharmacological and molecular mechanism of A. racemosus against epilepsy comorbid Alzheimer's disease and put forward a strategy to uncover the mechanisms of Traditional Indian Medicine based on network pharmacology. The online version contains supplementary material available at 10.1007/s40203-023-00169-x.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call