Abstract

The global coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to unprecedented social and economic consequences. The risk of morbidity and mortality due to COVID-19 increases dramatically in the presence of coexisting medical conditions, while the underlying mechanisms remain unclear. Furthermore, there are no approved therapies for COVID-19. This study aims to identify SARS-CoV-2 pathogenesis, disease manifestations, and COVID-19 therapies using network medicine methodologies along with clinical and multi-omics observations. We incorporate SARS-CoV-2 virus-host protein-protein interactions, transcriptomics, and proteomics into the human interactome. Network proximity measurement revealed underlying pathogenesis for broad COVID-19-associated disease manifestations. Analyses of single-cell RNA sequencing data show that co-expression of ACE2 and TMPRSS2 is elevated in absorptive enterocytes from the inflamed ileal tissues of Crohn disease patients compared to uninflamed tissues, revealing shared pathobiology between COVID-19 and inflammatory bowel disease. Integrative analyses of metabolomics and transcriptomics (bulk and single-cell) data from asthma patients indicate that COVID-19 shares an intermediate inflammatory molecular profile with asthma (including IRAK3 and ADRB2). To prioritize potential treatments, we combined network-based prediction and a propensity score (PS) matching observational study of 26,779 individuals from a COVID-19 registry. We identified that melatonin usage (odds ratio [OR] = 0.72, 95% CI 0.56-0.91) is significantly associated with a 28% reduced likelihood of a positive laboratory test result for SARS-CoV-2 confirmed by reverse transcription-polymerase chain reaction assay. Using a PS matching user active comparator design, we determined that melatonin usage was associated with a reduced likelihood of SARS-CoV-2 positive test result compared to use of angiotensin II receptor blockers (OR = 0.70, 95% CI 0.54-0.92) or angiotensin-converting enzyme inhibitors (OR = 0.69, 95% CI 0.52-0.90). Importantly, melatonin usage (OR = 0.48, 95% CI 0.31-0.75) is associated with a 52% reduced likelihood of a positive laboratory test result for SARS-CoV-2 in African Americans after adjusting for age, sex, race, smoking history, and various disease comorbidities using PS matching. In summary, this study presents an integrative network medicine platform for predicting disease manifestations associated with COVID-19 and identifying melatonin for potential prevention and treatment of COVID-19.

Highlights

  • The ongoing global coronavirus disease 2019 (COVID-19) pandemic has led to 38 million confirmed cases and 1 million deaths worldwide as of October 14, 2020

  • We found that host proteins in PanCoV-protein–protein interaction (PPI) (Fig 2B) and 4 other datasets (SARS2-differentially expressed gene (DEG), SARS2-differentially expressed protein (DEP), human coronavirus (HCoV)-PPI, and SARS2-PPI) (S6 Fig) were more likely to be highly connected in the human PPI network

  • Since our results show that RAC1 and angiotensin converting enzyme 2 (ACE2) had higher co-expression in inflamed enterocytes (Fig 6I), it is highly possible that these inflamed cells are more susceptible to SARS-CoV-2 infection, and that the infection could lead to an altered RAC1 expression level through PPIs with virus target proteins STOM, HDAC2, POLA2, CIT, and RAP1GDS1 (Fig 6B)

Read more

Summary

Introduction

The ongoing global coronavirus disease 2019 (COVID-19) pandemic has led to 38 million confirmed cases and 1 million deaths worldwide as of October 14, 2020. Several retrospective studies have reported the clinical characteristics of individuals with symptomatic COVID-19, and an emerging theme has been the significantly higher risk of morbidity and mortality among individuals with 1 or more comorbid health conditions, such as hypertension, asthma, diabetes mellitus, cardiovascular or cerebrovascular disease, chronic kidney disease, and malignancy [2,3,4,5,6,7]. These retrospective clinical studies are limited by small sample sizes and unmeasured confounding factors, leaving the underlying pathomechanisms largely unknown. Studies using transcriptomics [21], proteomics [22], and interactomics (PPIs) methods [8] have contributed to a better understanding of the SARS-CoV-2–host interactome, which has enabled the investigation of the complications and comorbidities of SARS-CoV-2 and a facilitated search for effective treatment (Fig 1B)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.