Abstract

The social network model has been regarded as a promising mechanism to defend against Sybil attack. This model assumes that honest peers and Sybil peers are connected by only a small number of attack edges. Detection of the attack edges plays a key role in restraining the power of Sybil peers. In this paper, an attack-resisting, distributed algorithm, named Random walk and Social network model-based clustering (RSC), is proposed to detect the attack edges. In RSC, peers disseminate random walk packets to each other. For each edge, the number of times that the packets pass this edge reflects the betweenness of this edge. RSC observes that the betweennesses of attack edges are higher than those of the non-attack edges. In this way, the attack edges can be identified. To show the effectiveness of RSC, RSC is integrated into an existing social network model-based algorithm called SOHL. The results of simulations with real world social network datasets show that RSC remarkably improves the performance of SOHL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.