Abstract

Most existing large-scale networked systems on the Internet such as peer-to-peer systems are vulnerable to Sybil attacks where a single adversary can introduce many bogus identities. One promising defense of Sybil attacks is to perform social-network based admission control to bound the number of Sybil identities admitted. SybilLimit, the best known Sybil admission control mechanism, can restrict the number of Sybil identities admitted per attack edge to O(log n) with high probability assuming O(n/ log n) attack edges. In this paper, we propose Gatekeeper, a decentralized Sybil-resilient admission control protocol that significantly improves over SybilLimit. Gatekeeper is optimal for the case of O(1) attack edges and admits only O(1) Sybil identities (with high probability) in a random expander social networks (real-world social networks exhibit expander properties). In the face of O(k) attack edges (for any k ∈ O(n/ log n)), Gatekeeper admits O(log k) Sybils per attack edge. This result provides a graceful continuum across the spectrum of attack edges. We demonstrate the effectiveness of Gatekeeper experimentally on real-world social networks and synthetic topologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.