Abstract
The water molecule, crucial to the chemical composition and dynamics of the universe, is typically identified in its gas phase via radio and submillimeter transitions, with frequencies up to a few THz. To understand the physicochemical behavior of astronomical objects, accurate transition frequencies are required for these lines. From a set of 26 new and 564 previous Lamb dip measurements, utilizing our ultrasensitive laser-based spectrometers in the near-infrared region, ultrahigh-precision spectroscopic networks were set up for H2 16O and H2 18O, augmented with 40 extremely accurate frequencies taken from the literature. Based on kHz-accuracy paths of these networks, considerably improved line-center frequencies have been obtained for 35 observed or predicted maser lines of H2 16O, as well as for 14 transitions of astronomical significance of H2 18O. These reference frequencies, attached with 5-25 kHz uncertainties, may help future studies in various fields of astrochemistry and astrophysics, in particular when precise information is demanded about Doppler-velocity components, including the gas flows of galactic cores, the kinematics of planetary nebulae, or the motion in exoplanetary atmospheres.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.