Abstract
This paper describes a language wrapper for the NetHack Learning Environment (NLE) [1]. The wrapper replaces the non-language observations and actions with comparable language versions. The NLE offers a grand challenge for AI research while MiniHack [2] extends this potential to more specific and configurable tasks. By providing a language interface, we can enable further research on language agents and directly connect language models to a versatile environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.