Abstract
In 2008, Han rediscovered an expansion of powers of Dedekind $\eta$ function due to Nekrasov and Okounkov by using Macdonald's identity in type $\widetilde{A}$. In this paper, we obtain new combinatorial expansions of powers of $\eta$, in terms of partition hook lengths, by using Macdonald's identity in type $\widetilde{C}$ and a new bijection. As applications, we derive a symplectic hook formula and a relation between Macdonald's identities in types $\widetilde{C}$, $\widetilde{B}$, and $\widetilde{BC}$. En 2008, Han a redécouvert un développement des puissances de la fonction $\eta$ de Dedekind, dû à Nekrasov et Okounkov, en utilisant l’identité de Macdonald en type $\widetilde{A}$. Dans cet article, nous obtenons un nouveau développement combinatoire des puissances de $\eta$, en termes de longueurs d’équerres de partitions, en utilisant l’identité de Macdonald en type $\widetilde{C}$ ainsi qu’une nouvelle bijection. Plusieurs applications en sont déduites, comme un analogue symplectique de la formule des équerres, ou une relation entre les identités de Macdonald en types $\widetilde{C}$, $\widetilde{B}$, et $\widetilde{BC}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Discrete Mathematics & Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.