Abstract
We present subarcsecond (FWHM ~ 0farcs7), near-infrared (NIR) JHKs-band images and a high-sensitivity radio continuum image at 1280 MHz, using SIRIUS on the University of Hawaii 88 inch (2.2 m) telescope and the Giant Metrewave Radio Telescope (GMRT). The NIR survey covers an area of ~24 arcmin^2 with 10 σ limiting magnitudes of ~19.5, 18.4, and 17.3 in the J, H, and Ks bands, respectively. Our NIR images are deeper than any JHK surveys to date for the larger area of the NGC 7538 star-forming region. We construct JHK color-color and J - H/J and H - K/K color-magnitude diagrams to identify young stellar objects (YSOs) and to estimate their masses. Based on these color-color and color-magnitude diagrams, we identified a rich population of YSOs (Class I and Class II) associated with the NGC 7538 region. A large number of red sources (H - K > 2) have also been detected around NGC 7538. We argue that these red stars are most probably pre-main-sequence stars with intrinsic color excesses. Most of the YSOs in NGC 7538 are arranged from the northwest toward the southeast regions, forming a sequence in age: a diffuse H II region (northwest and oldest, where most of the Class II and Class I sources are detected), a compact IR core (center), and regions with an extensive IR reflection nebula and a cluster of red young stars (southeast and south). We find that the slope of the Ks-band luminosity function of NGC 7538 is lower than the typical values reported for young embedded clusters, although equally low values have also been reported in the W3 Main star-forming region. From the slope of the Ks-band luminosity function and the analysis by Megeath and coworkers, we infer that the embedded stellar population is composed of YSOs with an age of ~1 Myr. Based on the comparison of models of pre-main-sequence stars with the observed color-magnitude diagram, we find that the stellar population in NGC 7538 is primarily composed of low-mass pre-main-sequence stars similar to those observed in the W3 Main star-forming region. The radio continuum image from the GMRT observations at 1280 MHz shows an arc-shaped structure due to the interaction between the H II region and the adjacent molecular cloud. The ionization front at the interface between the H II region and the molecular cloud is clearly delineated by comparing the radio continuum, molecular line, and NIR images.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have