Abstract

The technology of solid-state lighting has developed for decades in various industries. Phosphor, as an element part, determines the application domain of lighting products. For instance, blue and red-emitting phosphors are required in the process of plant supplementing light, arrow-band emitting phosphors are applied to backlight displays, etc. In this work, a Bi3+-activated blue phosphor is obtained in a symmetrical and compact crystal structure of Gd3SbO7 (GSO). Then, the co-doping strategy of alkali metal ions (Li+, Na+, and K+) is used to optimize the performance. The result shows that the photoluminescence intensity is increased by 2.1 times and 1.3 times respectively by introducing Li+ and K+ ions. Not only that, it also achieves narrow-band emitting with the full width of half-maximum (FWHM) reaching 42 nm through Na+ doping, and its excitation peak position also shifts from 322 to 375 nm, which can be well excited by near-ultraviolet (NUV) light emitting diode (LED) chips (365 nm). Meanwhile, the electroluminescence spectrum of GSO:0.6 mol%Bi3+,3 wt%Na+ matches up to 93.39% of the blue part of the absorption spectrum of chlorophyll a. In summary, the Bi3+-activated blue phosphor reported in this work can synchronously meet the requirements of plant light replenishment and field emission displays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call